

Climate impact hotspot mapping at the regional to local level

Paul Bowyer, Climate Service Center

Scientific Evaluation
Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research
January 24, 2018

Climate impact "winners" and "losers" in a two degree world

Coordinated by GERICS (Prof. Jacob, PI)

Identifying climate impact hotspots

Climate impact metric	Impact models used	Ensemble size
Hydrological drought (1 in 10 year return period low flow levels)	Two process models (E-Hype and LisFlood)	22
Floods (1 in 10 year return period)	Three process models (E-Hype, LisFlood, and VIC)	33
Cooling water	One process model (VIC)	5
Crop yield (winter wheat)	Two process models (EPIC, LPJmL)	10
Net primary production	Two process models (CLM4.0-CN, LPJmL)	10
Soil organic matter	Two process models (CLM4.0-CN, LPJmL)	10
Tourism summer VaR95	Regression model	9
Tourism winter VaR95	Regression model	9

Helmholtz-Zentrum
Geesthacht
Centre for Materials and Coastal Research

3

■ Climate impact "winners" in a two degree world

Climate impact "losers" in a two degree world

Significance

Selected for publication in EEA (2017) report 'Climate change, impacts and vulnerability in Europe 2016' -> informs EU adaptation strategy

Helmholtz-Zentrum
Geesthacht
Centre for Materials and Coastal Research

-

■ Climate impact hotspot mapping for the KfW

Visualizing changes in climate indices in a warmer world

Helmholtz-Zentrum
Geesthacht
Centre for Materials and Coastal Research

Ī

Method

- Utilizes the RGB colorspace and additive mixing to provide a simple but rapid visualization of areas of overlap
- Criteria defined for identification of hotspots (meaningful changes)

- Implemented with a large ensemble of EURO-CORDEX data (11km spatial resolution)
- Robust results: >66% simulations must agree that the criterion is satisifed for each climate index
- Applied in the context of differential changes in 1.5, 2, and 3 degrees C warmer worlds

Changes in a +1.5°C warmer world (w.r.t. pre-industrial)

Helmholtz-Zentrum
Geesthacht
Centre for Materials and Coastal Research

ć

Source: Pfeifer et al. (2017) submitted

■ Changes in a +2.0°C warmer world (w.r.t. pre-industrial)

Source: Pfeifer et al. (2017) submitted

Changes in a +3.0°C warmer world (w.r.t. pre-industrial)

Source: Pfeifer et al. (2017) submitted

Papers

Pfeifer et al., 2015, Atmosphere Pfeifer et al., 2017, submitted to Regional Environmental Change

Helmholtz-Zentrum
Geesthacht
Centre for Materials and Coastal Research

11

Summary

- Performed one of the most comprehensive assessments of the coincidence of multiple climate impacts in Europe in a +2°C world
 - Innovative multi-model approach to the quantification of uncertainty builds towards robust knowledge
 - Strong north/south gradient in the spatial distribution of the "winners" and "losers"
 - Provides a starting point for more detailed analysis of cross-sectoral feedbacks and interactions for adaptation planning
- Apply state-of-the-art approaches to dealing with uncertainty in climate indices and climate impacts, made transparent to users in products
- Policy relevant work that has influence in 'real world' adaptation policy and planning

Supplementary slides

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

■ Identifying climate impact hotspots

Climate impact	"Winner" criterion	"Loser" criterion
Hydrological drought (1 in 10 year return period low flow levels)	>10% increase	>10% decrease
Floods (1 in 10 year return period)	>10% decrease	>10% increase
Cooling water	>10% decrease in the number of days when 23°C threshold is exceeded	>10% increase in the number of days when 23°C threshold is exceeded
Crop yield (winter wheat)	>10% increase	>10% decrease
Net primary production	>10% increase	>10% decrease
Soil organic matter	>10% increase	>10% decrease
Tourism summer VaR95	>10% decrease	>10% increase
Tourism winter VaR95	>10% decrease	>10% increase

13

RCM/GCM pairs used in IMPACT2C

RCM/GCM pair Time period when GCM reaches 2°C above pre-

industrial

RCP2.6

SMHI-RCA4 / EC-EARTH-r12 2 degree period not reached (2070-2099 used) CSC-REMO / MPI-ESM-LR-r1 2 degree period not reached (2070-2099 used)

RCP4.5

CSC-REMO / MPI-ESM-LR-r1 2050-2079 SMHI-RCA4 / EC-EARTH-r12 2042-2071 SMHI-RCA4 / HadGEM2-ES-r1 2023-2052 IPSL.INERIS-WRF331F / IPSL-CM5A-MR-r1 2028-2057 KNMI-RACMO22E / EC-EARTH-r12 2042-2071

RCP8.5

CSC-REMO / MPI-ESM-LR-r1 2030-2059 KNMI-RACMO22E / EC-EARTH-r1 2028-2057 SMHI-RCA4 / HadGEM2-ES-r1 2016-2045 SMHI-RCA4 / EC-EARTH-r12 2027-2056

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

