Institute of Coastal Research

Research Unit *Biogeochemistry in Coastal Seas*

Emerging contaminants in the catchment-to-sea continuum – Environmental regulations and changes in pollution status

Hanna Joerss – PhD candidate, Universität Hamburg

Organic pollutants in coastal oceans

Helmholtz-Zentrum
Geesthacht
Centre for Materials and Coastal Research

- Investigation of coastal areas and catchments as input pathways for pollutants into the marine environment
- Focus on persistent organic pollutants with a potential for long-range transport
- Occurrence, sources, transport and fate
 Change of pollution status due to regulations
 Scientific basis for future regulations

- Current emphasis on emerging substances like
 - Per- and polyfluoroalkyl substances (PFAS)
 - Alternative flame retardants (aFRs, e.g. aBFRs and OPEs)
 - UV stabilizers and UV filters

PFAS – properties and uses

Helmholtz-Zentrum
Geesthacht

Centre for Materials and Coastal Research

PFAS = Per- and Polyfluoroalkyl Substances

↓ ↓

fully or partially fluorinated alkyl chain

hydrophobic fluorinated chain hydrophilic functional group

- Water-, oil- and dirt-repellent
- High thermal, photolytic and chemical stability
- Wide range of application areas

3

PFAS – substances of high concern

Helmholtz-Zentrum
Geesthacht
Centre for Materials and Coastal Research

PFOS and PFOA: global contaminants of high concern

- persistent
- bioaccumulative
- toxic
- undergo long-range transport
- → Actions by industry and regulatory authorities

2006 US EPA 2010/2015 PFOA Stewardship Program

2009 PFOS added to Annex B of Stockholm Convention

2013 PFOA included in candidate list of substances of very high concern under REACH

Ongoing evaluation of PFOA under Stockholm Convention

Point of departure

Effects of environmental regulations and industry initiatives on pollution status of the catchment-to-sea continuum

- Transition to an unknown amount of less investigated alternatives?
- Differences between developed and developing countries?

Our PFAS Portfolio

- 38 legacy and 8 alternative PFAS
- Large variety of matrices
- Samples from
 - industrialized regions (Europe, China)
 - high altitude environments (Alps, Tibet)
 - remote marine areas (Atlantic, Pacific)
 - polar regions (Arctic, Antarctica)

Sampling locations

- North Sea including its catchments
- Comparison to China in cooperation with Yantai Institute of Coastal Zone Research
 - → major production sites of fluoropolymer industry
 - → less regulated

Effects of regulations – shift to alternatives

1) Shift to short-chain homologues

- Short-chain PFAS: less toxic and bioaccumulative, but
 - more soluble and mobile
 - larger quantities needed

7

Effects of regulations – shift to alternatives

1) Shift to short-chain homologues

- Decreasing levels of regulated long-chain PFAS PFOS and PFOA in samples taken after 2006
- Increase of short-chain compound PFBS from 2005 to 2007; decreased concentration in samples taken from 2011 onwards

Effects of regulations – shift to alternatives

Helmholtz-Zentrum
Geesthacht

Centre for Materials and Coastal Research

2) Shift to PFAS with different functionalities

Joerss et al., 2018, in prep.

- Fluorinated alternative HFPO-DA already one of the dominating PFAS in the German Bight today
- Concerns about replacements
 - similar structures
 - limited data

problem just shifted ?

Effects of regulations - geographical shift

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Riverine fingerprints of catchments

Xiaoqing III River fluoropolymer production

- Identification of point sources in European and Chinese catchments
- PFAS concentrations several orders of magnitude higher in China
 - PFOA up to 6000 x

HFPO-DA 42 x

higher in comparison to Rhine-Meuse delta

Significant differences in substance pattern

Heydebreck et al., 2015, Environ Sci Technol $^{\ 10}$

Effects of regulations – geographical shift

Substance pattern of legacy PFAS in coastal surface waters

Zhao et al., 2015, Chemosphere

Zhao et al., 2017, Sci Total Environ

Long-chain compound PFOA dominating in Chinese seas

11

Summary and conclusion

- Data show changes in pollution status of coastal and marine environment as a consequence of regulations exemplified by PFAS
 - shift to alternative substances
 - geographical shift
- Exposure of the environment to controversially discussed replacements demonstrates necessity to evaluate these substances regarding future regulations
- Legacy pollutants which are regulated in Europe or internationally are still highly relevant in countries with lower environmental standards

References

Ahrens, L.; Felizeter, S.; Ebinghaus, R. (2009): Spatial distribution of polyfluoroalkyl compounds in seawater of the German Bight. *Chemosphere* 76: 179–184.

Ahrens, L.; Gerwinski, W.; Theobald, N.; Ebinghaus, R. (2010): Sources of perfluoroalkyl compounds in the North Sea, Baltic Sea and Norwegian Sea: Evidence from their spatial distribution in surface water. *Marine Pollution Bulletin* 60: 255–260.

Heydebreck, F.; Tang, J.; Xie, Z.; Ebinghaus, R. (2015): Alternative and legacy perfluoroalkyl substances: Differences between European and Chinese river/estuary systems. *Environmental Science & Technology* 49: 8386–8395.

Theobald, N.; Caliebe, C.; Gerwinski, W.; Hühnerfuss, H.; Lepom, P. (2011): Occurrence of perfluorinated organic acids in the North and Baltic seas. Part 1: distribution in sea water. *Environmental Science and Pollution Research* 18: 1057–1069.

Zhao, Z.; Xie, Z.; Tang, J-H.; Sturm, R.; Chen, Y-J.; Zhang, G.; Ebinghaus, R. (2015): Seasonal variations and spatial distributions of perfluoroalkyl substances in the rivers Elbe and lower Weser and the North Sea. *Chemosphere* 129: 118–125.

Zhao, Z.; Tang, J.; Mi, L.; Tian, C.; Zhong, G.; Zhang, G.; Wang, S.; Li, Q.; Ebinghaus, R.; Xie, Z.; Sun, H. (2017): Perfluoroalkyl and polyfluoroalkyl substances in the lower atmospheres and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River Estuary. *Science of the Total Environment* 599–600: 114–123.

Pictures

¹ Polarstern (slide 5): Hannes Grobe, Alfred Wegener Institute - Self-published work, CC BY-SA 2.5, URL: https://commons.wikimedia.org/w/index.php?curid=731714 (accessed: 03/01/2018)